
Valbruna leader nel campo dei prodotti lunghi in acciaio inossidabile e leghe di nickel, è oggi presente sul mercato con una produzione di titanio e continua la strategia intrapresa sin dalla sua fondazione nel 1925, basata sull'alta qualità dei prodotti e su un elevato servizio di assistenza alla clientela.

Valbruna founded in 1925 and leader in the production of long products in stainless steel and nickel alloys, presents a selected range of titanium products supported by long experience and highly qualified customer

Fort Wayne, (IN) plant

USA: Fort Wayne

VALBRUNA...SUCH A GREAT REALITY!

Un fattore di competitività che da sempre caratterizza Valbruna, è la sua vasta e strategica rete distributiva, che assicura non solo la capillare presenza commerciale nei mercati di riferimento in Italia e nel mondo, ma anche un costante feedback con la clientela.

Our vast and strategic distribution network is our corner stone in a global market, granting not only a worldwide commercial presence but also a steadfast feedback with customers.

ITALY Ancone Milano Bologna

Germany France **England** Ireland Denmark Switzerland Netherlands

EUROPE

Finland

AMERICA United States

ASIA - OCEANIA Hong Kong Australia Malaysia

CORROSION AND OXIDATION RESISTANCE

DECIGNATIONS

V155 exhibits good resistance to oxidation up to 600°C. Long-term exposure to elevated temperatures can result in reduced toughness in precipitation hardenable stainless steels. Decreased toughness caused by prolonged exposure to high temperatures can be reduced by high-temperature aging.

Corrosion resistance of V155 is pretty comparable to AISI 304 and similar to AISI 630. Stress-corrosion cracking resistance is achieved by precipitation treatment at temperatures equal or higher than 550°C in order to provide lowest hardness compatible with the specific use. V155 exhibits also good erosion-corrosion resistance thanks to its corrosion resistance combined with high hardness.

For better corrosion resistance surfaces should be clean, free of scale and residuals. Passivation is recommended for fabricated parts.

Annealed condition is not suitable for applications or services. Precipitation hardening after solution treatment is recommended in order to avoid delayed crackings.

ACCIAIERIE VALBRUNA

MATERIAL DESCRIPTION

GENERAL: V155 is a martensitic SS which could be strengthened by precipitation treatment leading a Cu-containing phase to precipitate in the alloy. It is typically used for parts requiring corrosions and high mechanical properties up to 315°C. The proper chemical composition and the manufacturing process promote improved toughness in the transversal section and good ductility; these features are obtained by balanced chemistry capable to limit the content of δ -ferrite and by consumable electrode remelting practice capable to control the inclusion content tight.

APPLICATIONS

Aircraft components (structural parts, flap Tracks and engine pylons), fabricated parts in high pressure corrosive environments including valves, shafts, fasteners, fittings and gears.

DEGIGIANTONO				
UNS	AFNOR	ASTM	AECMA	EN
S15500	EZ5CNU15-04	XM-12	FE-PM64/FE-PM1802	1.4545/X5CrNiCuNb15-5

CHEMICAL COMPOSITION (chemistry shall conform to the following percentages by weight) C Mn Si P S Element Fe Cr Ni Cb Cu Mo Min[%] 14.00 3.50 5xC 2.50 Bal. Max[%] 0.07 1.00 1.00 0.030 0.015 15.50 5.50 0.45 4.50 0.50

Condition		Temperatures	Soaking times	Cooling
Solution Treatment	Cond. A 1040° ± 15°C		Commensurate to section, Min 30'	Air to below 30°C, alt.: φ≥ 75mm → rapid air cooling φ< 75mm → air
	H900	480° ± 5°C	1 hrs ± 5'	Air cooling
	H925	500° ± 5°C	4 hrs ±15'	Air cooling
	H1025	550° ± 5°C	4 hrs ±15'	Air cooling
Precipitation	H1075	580° ± 5°C	4 hrs ± 15'	Air cooling
hardening	H1100	590° ± 5°C	4 hrs ± 15'	Air cooling
	H1150	620° ± 5°C	4 hrs ± 15'	Air cooling
	H1150M	760° ± 5°C	2 hrs ± 15'	Air cooling
	(double PH)	620° ± 5°C	4 hrs ± 15'	Air cooling

AEROVAL V155

DU.	vei	CAL	DD	OPE	DT	EC
10 8 8	ıoı	UAL	. г п	UFF		EO

		Cond. A	Cond. H900	Cond. H1075	Cond. H1150
Density (gr/cm³ at 20°C)		7,75	7.81	7.83	7.86
Modulus of elasticity (GPa)			1	96	
Mean Coefficient of	-73 +21° C	-	10.4	10.8	11.0
Thermal Expansion (10 ^{-€} /°C)	+21 +427° C	11.3	11.7	12.2	13.0
Thermal Conductivity	+20° C	18.3	17.8	-	•
(W/mK at 20°C)	+500° C	22.7	22.7	*	-
Electrical resistivity (μΩ×m at 20°C)		E	0.770	0.800	(1 5)
Magnetic Permeability		Ferror	nagnetic		

MECHANICAL PROPERTIES

Condition		Charpy V-notch Impact Strength Hardness		rdness	Ultimate Tensile Strength	0.2% Yield Strength	Elongation [50mm or 4D]	Reduction	
Contaion		(J)	HRC	НВ	(N/mm²), min	(N/mm²), min	(%), min	of Area (%), min	
Solution Treatment	Cond.A			363 max					
	H900	20	40-44	388-444	1300	1170	10	35	
	H925	34	38-42	375-429	1170	1070	10	38	
	H1025	48	33-38	331-401	1070	1000	12	45	
Precipitation	H1075	54	29-36	311-375	1000	860	13	45	
treated	H1100	61	29-34	302-363	965	795	14	45	
	H1150	68	26-33	277-352	930	725	16	50	
	H1150M	138	26-36	277	790	515			

HOT WORKING

V155 could be easily forged and hot-formed. Before forging, material should be heated at 1180-1200°C for 1 hour.

Forging below 1000°C is not recommended. In order to have material exhibiting best grain size and mechanical properties, forgings should be cooled in air to below 35°C before further processing.

COLD WORKING

The material could be moderately but not hardly formed in the overaged conditions. Best machinability or cold deformation can be achieved in the double-aged conditions (H1150M).

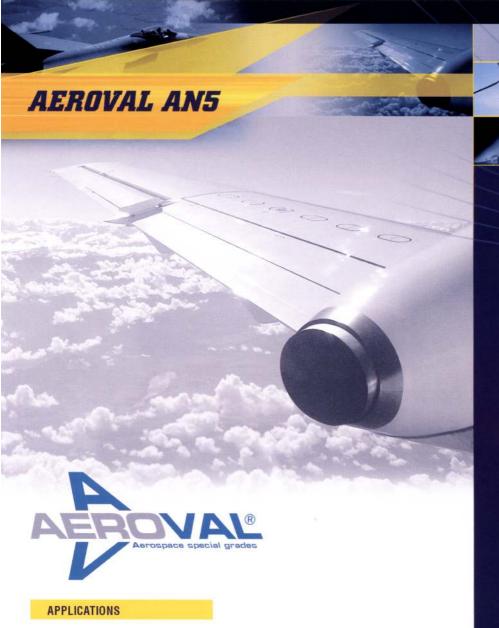
WELDABILITY

V155 can be satisfactorily welded by conventional inert gas, shielded fusion and resistance processes. Because of Carbon pickup. Preheating is generally not required to prevent cracking, while post-welding heat treatment is recommended to generate the precipitation-hardening properties.


Material could be welded in the solution annealed condition, and can be precipitation treated to the requested hardness after welding; nevertheless, in order to minimize the effect of several thermal cycles, to have more uniform properties and to have best corrosion resistance in the aged material, solution annealing is suggested before precipitation treatment. In case high welding stresses are expected, it could be better to weld in the overaged conditions (H1150); in this case, the component should be solution treated after welding and aged.

Should the weld not exhibit high strength an austenitic stainless filler as E/ER308L has to be used If welding has to provide properties similar to the ones of the base metal in the precipitation treated condition than E/ER630 filler metal is required in order to have the filler producing the precipitation hardening effect.

SPECIFICATIONS


ASTM	AMS
A 564	5659

ACCIAIERIE VALBRUNA

VIALE DELLA SCIENZA, 25 36100 VICENZA ITALY Tel. +39 (0)444 968211 Fax +39 (0)444 963836

For their high-temperature strength and corrosion resistance this alloy is used in aerospace industry, power generation (component of aircraft and industrial gas turbines, shaft, vanes, blades, jet engines), automotive industry (fasteners, bolts and screws, springs, afterburners), thermal processing, non-magnetic cryogenic equipment.

DESIGNATIONS

UNS	AECMA	AFNOR	ASTM	EN
S66286	FE-PA 92HT/FE-PA 2601	EZ6NCT25	660	1.4980/1.4944/X6NiCrTiMoVB25-15-2

ACCIAIERIE VALBRUNA

AN5 is an iron-nickel-chromium alloys. Elements like Al and Ti in austenitic structure made this alloy aged-hardenable by appropriate heat treatment with increase of strength and hardness. Addition of Molybdenum provide high-temperature stability and reduce high-

This alloy has greater resistance to high temperature than low-alloy steel and stainless steel and shows good mechanical properties at temperatures up to 700° C.

The corrosion resistance of this alloy is excellent up to 700°C; it shows an oxidation resistance similar to AISI

It maintains good corrosion and oxidation resistance for continuous service to 815°C, intermittent to 980°C. Nevertheless its corrosion resistance to sulfuric and phosphoric acid is moderate. Its aqueous corrosion

After the solution heat treatment material achieves UTS 680-690 N/mm², in this condition it can be cold-

CORROSION AND OXIDATION RESISTANCE

MATERIAL DESCRIPTION

temperature creep.

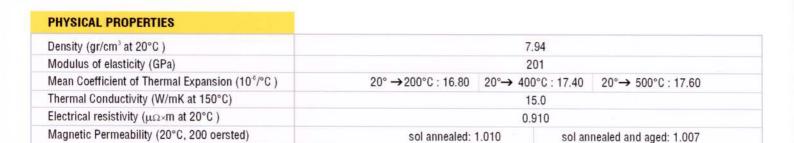
310 up to 816°C.

resistance is similar to 316L.

formed by standard processes.

COLD WORKING

CHEMICAL COMPOSITION (chemistry shall conform to the following percentages by weight)


Element	С	Mn	Si	P	S	Cr	Mo	Fe	Al	Ti	Ni	Cu	V	В
Min[%]	-	1.00	-	-	2	13.50	1.00	56.00	-	1.80	24.00	-	0.10	0.003
Max[%]	0.08	2.00	1.00	0.030	0.015	16.00	1.50	-	0.40	2.30	27.00	0.50	0.50	0.010

HEAT TREATMENTS

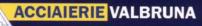
Condition	Temperatures	Soaking times	Cooling
solution treatment	900 +/-14°C	hold 2 hrs min	liquid quench
(S. T.)	980 +/-14°C	hold 1 hrs min	liquid quench
	720 +/-14°C	hold 16 hrs	air cool
precipitation hardening treatment (P. T.)	775 +/-14°C 650 +/-14°C (*)	hold 16 hrs	air cool

The solution treatment at 980°C produces a slightly coarser grain size inducing highest creep-rupture strength after aging. The solution treatment at 900°C produces a finer grain size with effect a better ductility and tensile strength at room temperature. (*)The second heat treatment is intended to increase notch strength.

HUI WURKING			
Process	Heating temperatures	Cooling	
Forging	1038° - 1150°C	Air	

Below 930°C it is recommend not to subject the material to any hot forming operation.

MECHANICAL PROPERTIES


	Conc	dition		Mechanical Properties					Stress Ru	ipture Test	
	Conc	IIOIII	(in S.T.P.T. Condition)					Test Par	ameters	Requirements	
Spec. Standard	S.H [°C]	P.H [°C]	Ultimate Tensile Strength (N/mm²), min	0.2% Yield Strength (N/mm²), min	Elongation [50mm or 4D] (%), min	Reduction of Area (%), min	Hardness Brinell (HB)	Test Temp. (C°)	Test Load (N/m²)	Hours min (h)	E in 4D min (%)
AMS	900	720	965	655	12	15	277-363	650	448	23	5
AIVIO	980	720	895	586	15	20	248-341	650	482	23	5
ASTM class A	900	720	895	586	15	18	248-341	650	386	100	5
ASTM class B	980	720	895	586	15	18	248-341	650	386	100	5
ASTM class C	980	775	895	586	15	18	248-341	650	386	100	5
ASTM class D	900 or 980	720 (**)	895	725	15	18	248-321	021	-	-	¥
ASTM tipe 1	900	705 760	895	586	15	18	min 248	650	386	23	3
ASTM tipe 2	980	705 760	895	586	15	18	min 248	650	386	23	3

^(**) if necessary to achieve properties second age at 650 +/-14°C, hold 16 hrs and air cool.

SPECIFICATIONS

ASTM	BS	EN	AMS
A453, A638	HR51	10269, 10302	5731, 5732, 5734, 5737

ACCIAIERIE VALBRUNA

VIALE DELLA SCIENZA, 25 $\,$ 36100 VICENZA ITALY Tel. +39 (0)444 968211 $\,$ Fax +39 (0)444 963836

^(***) oil quenched

APPLICATIONS

Aerospace component (aircraft-engine and airframe components, gas turbine engine ducting, combustion liners, ...), chemical-processing equipment handling mixed acids both oxidizing and reducing, power generation equipment (superheater-tube shield, soot-blower tubes, boiler-tube separator and hangers), sea water application (ship and submarine parts, offshore industry), pollution control equipment for environmental protection, nuclear water reactors (reactor-core and control-core components), heat shields, furnace hardware, plant equipment, MIG / TIG electrodes.

Grade 1 is recommended for application where combination of tensile and rupture properties is requested (above 1038°C). In this condition ductility and toughness at cryogenic temperature are very good.

Grade 2 is recommended for application where the resistance to creep is important (above 815°C) and where cold drawing or cold rolling operation are further requested. It shows good resistance to many corrosion atmospheres. It is not used for application below at 816°C.

Above 650°C both grade could be used.

When this alloy is requested for application below 649°C it is recommended an other heat treatment (900°C + air quench).

ACCIAIERIE VALBRUNA

MATERIAL DESCRIPTION

GL3 is a solid solution nickel-base alloy. This alloys shows high mechanical properties at temperatures up to 450°C and above 600°C, good corrosion resistance in different environment (mineral and organic acids), to crevice corrosion, pitting, erosion, intergranular attack, stress corrosion cracking resistance.

This performances are achieved by the combination of Nickel, Chromium, Molybdenum and Columbium.

This grade can be subjected to two different heat treatments to achieve appropriate mechanical properties for different application: annealing (grade 1) and solution annealing (grade 2).

CORROSION AND OXIDATION RESISTANCE

This alloy exhibits high resistance to corrosive attack in a wide variety of environment. The combination of Nickel and Chromium provides to oxidizing media, while the combination of Nickel and Molybdenum provides resistance to reducing conditions, however the Columbium content prevents intergranular corrosion and the Molybdenum content enhances the resistance to pitting and crevice corrosion. At high temperatures this grade maintains good resistance to scaling and oxidation.

COLD WORKING

This grade can be cold-formed by standard processes. Generally after cold working with more than 15% deformation a solution annealed heat treatment (grade 2) is requested.

DESIGNATIONS

UNS	AECMA	AFNOR	EN
N06625	Ni-P97HT/Ni-PH3601	NC22DNb	2.4856/NiCr22Mo9Nb

CHEMICAL COMPOSITION (chemistry shall conform to the following percentages by weight)

Element	С	Mn	Si	P	S	Cr	Ta	Cb+Ta	Co	Mo	Fe	Al	Ti	Ni
Min[%]	-	7.	-	1051	-	20.00	-	3.15	;=;;	8.00	-	-	-	58.00
Max[%]	0.10	0.50	0.50	0.015	0.015	23.00	0.05	4.15	4.00	10.00	5.00	0.40	0.40	-

HEAT TREATMENTS

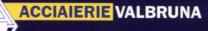
Condition		Temperatures	Soaking times	Cooling
Grade 1	Annealed	870°C min	depend on volume and section thickness. Generally 0.5 - 1hrs	
Grade 2	Sol Annealed	1090°C min (*)	depend on volume and section thickness. Generally 0.5 - 1hrs	Water quenching or rapid air cooling

	8.44		
annealed: 2	08 sol ar	nnealed: 201	
20° →200°C: 13.10	20°→ 400°C: 13.90	20°→ 500°C: 14.40	
	9.8		
1.26			
	1.006		
		annealed: 208 sol a 20° →200°C: 13.10 20°→ 400°C: 13.90 9.8 1.26	

Condition	Dimension (mm)	Ultimate Tensile Strength (N/mm²), min	0.2% Yield Strength (N/mm²), min	Elongation [50mm or 4D] (%), min	Reduction of Area (%), min	Hardness Brinell (HB)
Grade 1	ф< 100	820	410	30	40	
Grade 1	101< φ<254	740	340	25	40	240 max
Grade 2	all	670	270	30	50	

HOT WORKING		
Process	Heating temperatures	Cooling
Forging	900° - 1150°C (**)	Water quenching or rapid air

^(**) At temperature below of 1010°C this grade becomes very difficult to be hot formed, for this reason different steps of hot working with intermediate heat treatment are necessary. An reduction of 15/20% is recommended for finishing steps.


To achieve properties and corrosion resistance annealing or solution annealing treatments are requested on the final product.

WELDABILITY

It is designed for use with gas-tungsten-arc or a consumable electrode. After the welding final heat treatment is not requested because material maintains same behavior of base metal. Nevertheless standard practices should be followed.

ECIFICATIONS				
ASTM	DIN	EN	BS	AMS
B446, B564	17744, 17752	10095	3076-NA21	5666

ACCIAIERIE VALBRUNA

VIALE DELLA SCIENZA, 25 $\,$ 36100 VICENZA ITALY Tel. +39 (0)444 968211 Fex +39 (0)444 963836

MATERIAL DESCRIPTION

Austenitic Stainless Steel stabilized by the addition of Titanium. Since this grade is an austenitic one, it can not be precipitation hardened; mechanical properties can be increased by cold working only. AIST exhibits good intergranular corrosion resistance.

APPLICATIONS

AIST can be used for aircraft components as collector rings, exhaust manifolds, expansion joints. Generally AISC is used for applications subjected to intermittent heating from 450° and 900°C as: pressure vessels, welded structures, high-temp. chemical processing and gas turbine blades.

CORROSION AND OXIDATION RESISTANCE

Because of the Columbium addition capable to enhance the intergranular corrosion resistance, AIST can be used for many different applications as chemical and oil processing, textile manufacturing and food industry.

AIST provide a good resistance to scale formation up to 860°C

WELDABILITY

AIST can be welded. If filler metal is requested AWS E/ER347 should be used. Post-weld heat treatment is not strictly needed unless high temperature service is required.

DESIGNATIONS

AISI	AFNOR	UNS	AECMA	EN
321	Z6CNT18-10	S32100	FE-PA 13/FE-PA 3601	X6CrNiTi18-10/1.4541/1.4544

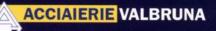
CHEMICAL COMPOSITION (chemistry shall conform to the following percentages by weight)

Element	Fe	С	Mn	Si	P	S	Cr	Ni	Ti	Cu	Mo
Min[%]	Bal.	-	-		13-1	-	17.00	9.00	5xC	-	-
Max[%]	Dal.	0.08	2.00	1.00	0.045	0.030	19.00	12.00	0.70		-

8 2 J 2 N	A-1 1 M	4 5 250	24 2 4 8	TIES

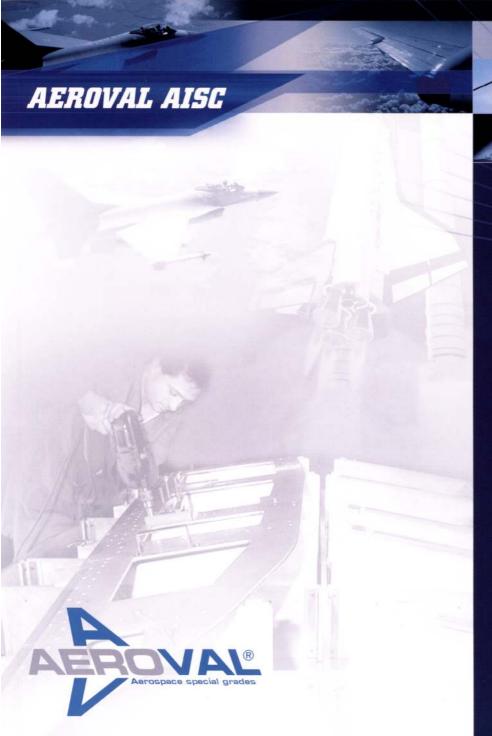
Density (gr/cm³ at 20°C)	7,90			
Modulus of elasticity (GPa)	200			
Mean Coefficient of Thermal Expansion (10 ⁻⁶ /°C)	$20^{\circ} \rightarrow 200^{\circ}\text{C}: 16.5 20^{\circ} \rightarrow 400^{\circ}\text{C}: 17.5 20^{\circ} \rightarrow 500^{\circ}\text{C}: 18.0$			
Thermal Conductivity (W/mK at 20°C)	15.0			
Electrical resistivity (μΩ×m at 20°C)	0,730			
Magnetic Permeability	Non-magnetic			

MECHANICAL PROPERTIES				
Condition	НВ	Ultimate Tensile Strength (N/mm²)	0.2% Yield Strength (N/mm²), min	Elongation [5D] (%), min
Annealing	220 max	500 - 750	205	40


HEAT TREATMENTS			
Condition	Temperatures	Soaking times	Cooling
Annealing	1000° - 1080°C	Commensurate to section	Water

HUT WURKING			
Process	Heating temperatures	Cooling	
Forging	900° - 1150°C	Air	

SPECIFICATIONS			
EN	ASTM	AMS	FEDERAL STANDARDS
10088 - 3	A276; A182; A479	5645	QQ - S - 763



ACCIAIERIE VALBRUNA

VIALE DELLA SCIENZA, 25 36100 VICENZA ITALY Tel. +39 (0)444 968211 Fax +39 (0)444 963836

MATERIAL DESCRIPTION

Austenitic Stainless Steel stabilized by the addition of Columbium. Mechanical properties can be increased by cold working only. AISC exhibits good intergranular corrosion resistance.

APPLICATIONS

AISC can be used for aircraft components as collector rings, exhaust manifolds, expansion joints. Generally AISC is used for applications subjected to intermittent heating from 450° and 800°C as: fireproof bulkhead, pressure vessels, welded structures, high-temp. chemical processing and gas turbine blades.

CORROSION AND OXIDATION RESISTANCE

Because of the Columbium addition capable to enhance the intergranular corrosion resistance, AISC can be used for many different applications as chemical and oil processing, textile manufacturing and food industry.

AISC provide a good resistance to scale formation up to 860°C .

WELDABILITY

AISC can be welded. If filler metal is requested AWS E/ER347 should be used. Post-weld heat treatment is not strictly needed unless high temperature service is required.

١	DESIGNATIONS				
	AISI	AECMA	UNS	AFNOR	EN
	347	FE-PA 14/ FE-PA 3701	S34700	Z6CNNb18 - 10	X6CrNiNb18-10/1.4550/1.4546

GIILMIGAL	COMIT OF	LION (cheilli	stry stratt cor	HOLLII TO THE	following pe	icentages by	wergint)				
Element	Fe	С	Mn	Si	Р	S	Cr	Ni	Cb	Cu	Mo
Min[%]	Pal	181	7.	-	-	130	17.00	9.00	10xC		-
Max[%]	Bal.	0.08	2.00	1.00	0.045	0.015	19.00	12.00	1.00	-	-

PHYSICAL PROPERTIES	
Density (gr/cm³ at 20°C)	7,90
Modulus of elasticity (GPa)	200
Mean Coefficient of Thermal Expansion (10-6/°C)	$20^{\circ} \rightarrow 200^{\circ}\text{C}$: 16.50 $20^{\circ} \rightarrow 400^{\circ}\text{C}$: 17.50 $20^{\circ} \rightarrow 500^{\circ}\text{C}$: 18.0
Thermal Conductivity (W/mK at 20°C)	15.0
Electrical resistivity (μΩ×m at 20°C)	0,740
Magnetic Permeability	Non-magnetic

MECHANICAL PROPERTIES				
Condition	НВ	Ultimate Tensile Strength (N/mm²)	0.2% Yield Strength (N/mm²), min	Elongation [5D] (%), min
Annealing	220 max	500 - 750	205	40

TREATMENTS			
Condition	Temperatures	Soaking times	Cooling
Annealing	1000°-1080°C	Commensurate to section	Water

HOT WORKING		
Process	Heating temperatures	Cooling
Forging	900°-1150°C	Air

SPECIFICATIONS				
ASTM	FEDERAL STANDARDS	EN	AMS	
A182, A276, A479, A580	QQ-S-763	10088 - 3; 10272	5646	

ACCIAIERIE VALBRUNA

VIALE DELLA SCIENZA, 25 $\,$ 36100 VICENZA ITALY Tel. +39 (0)444 968211 Fex +39 (0)444 963836